Pourcentage

Un pourcentage est une façon d'exprimer un nombre comme une fraction de cent, le plus souvent en utilisant le signe %, quelquefois l'abréviation p.



Catégories :

Mathématiques élémentaires - Méthode d'analyse

Recherche sur Google Images :


Source image : forum.pcastuces.com
Cette image est un résultat de recherche de Google Image. Elle est peut-être réduite par rapport à l'originale et/ou protégée par des droits d'auteur.

Page(s) en rapport avec ce sujet :

  • Un pourcentage est une façon d'exprimer une fraction.... de combien le commerçant aurait-il dû augmenter ses prix pour retrouver une valeur de 100euros ?... (source : bibmath)
  • Un pourcentage est une manière d'exprimer des proportions dans un ensemble en ... du prix d'achat revient à l'artiste qui a signé le C. D. Combien, lorsque l'artiste vend math... et on affecte la troisième valeur d'un nombre égal à . math... (source : fr.math.wikia)
  • Un pourcentage est une façon d'exprimer une proportion ou une fraction dans un ensemble.... Le pourcentage de remise comparé au prix est d'environ 5 % car... revient pas à laisser la valeur semblable (de même dans le sens inverse, ... (source : techno-science)
signe pour cent %

Un pourcentage est une façon d'exprimer un nombre comme une fraction de cent, le plus souvent en utilisant le signe %, quelquefois l'abréviation p. c. , ou rarement en écrivant en toutes lettres pour cent : 5 %, 5 p. c., 5 pour cent. On utilise le pourcentage uniquement quand un nombre représente une proportion ou une fraction d'un ensemble.

D'usage particulièrement habituel dans le monde actuel puisqu'on le rencontre en statistique comme en économie, le pourcentage est une notion qui peut induire de nombreuses erreurs de raisonnement.

Notation

Article détaillé : %.

La notation des pourcentages semble tirer son origine de l'italien. Dans les textes du Moyen Âge, on peut voir des notations comme «per cento». ou «per c.» ou «p. cento». Selon D. E Smith[1], la première trace d'un symbole voisin de celui utilisé aujourd'hui, se trouve dans un manuscrit italien anonyme écrit vers 1425 sous la forme p
frac oo . Le p s'est ensuite perdu et la barre est devenue oblique. Les deux «o» ont ensuite été assimilés aux deux zéros de 100 ce qui a conduit à noter ‰ le symbole «pour mille».

Le signe «%» en typographie française doit être précédé et suivi d'une espace forte[2], [3].

Dans d'autres langues, et surtout en anglais, le signe est collé au chiffre.

Calculs élémentaires

On compare une valeur spécifique à une valeur de référence, et on cherche à déterminer ce que vaudrait cette valeur spécifique si la valeur de référence était ramenée à 100 tout en respectant les proportions.

Avec un vocabulaire de, on peut écrire qu'on compare une population partielle à une population totale, et qu'on cherche à déterminer ce que vaudrait cette population partielle si la population totale était ramenée à 100 tout en respectant les proportions.

Exemple : 56 personnes parmi 400 (population de référence) ont une particularité P. Par conséquent 14 % ont une particularité P. En effet, pour ramener 400 à 100, il faut diviser 400 par 4, et faire de même avec 56 pour conserver la proportion. Or 56 / 4 = 14.

Le calcul de ce pourcentage revient à trouver le numérateur d'une fraction dont le dénominateur serait 100 et qui serait égale à \dfrac{56}{400}. C'est ainsi qu'on confond fréquemment la fraction de dénominateur 100 avec le pourcentage et par conséquent le pourcentage avec le nombre décimal 0, 14. Cette confusion, particulièrement pratique en mathématique, induit quelquefois des incompréhensions dans le domaine technique puisque on rencontre fréquemment l'indication de calcul suivante : pourcentage de personne ayant la particularité P : \dfrac{56}{400} \times 100 = 14

Calculer un pourcentage

Dans une assemblée de 50 personnes, il y a 31 femmes. Celles-ci représentent 62 % de l'assemblée car :

\dfrac{31}{50} = 0,62 = \dfrac{62}{100} = 62 %.

On peut aussi voir le problème comme la recherche d'une quatrième proportionnelle. Il s'agit de trouver t tel que :

\dfrac{31}{50}= \dfrac t{100}, soit t=\dfrac{31 \times 100}{50}.

Lorsque on compare une valeur spécifique à une valeur de référence, il est envisageable d'obtenir des pourcentages dépassant 100 %. Si le coût d'un produit passe de 30 euros à 48 euros et si on considère que le premier prix est une valeur de référence, le second prix représente 160 % du premier prix car :

\dfrac{48}{30}=1,6= \dfrac{160}{100} = 160 %.

Cet aspect du pourcentage est spécifiquement utilisé en économie dans la notion d'indice.

Appliquer un pourcentage

Appliquer un pourcentage, c'est retrouver la valeur étudiée (ou la population partielle) connaissant le pourcentage et la valeur (ou la population) de référence. Cette valeur étudiée se détermine en multipliant la valeur de référence par le décimal associé au pourcentage.

Si une assemblée de 120 personnes compte 15 % de femmes, alors il y a 18 femmes dans cette assemblée car :

120 \times 0,15 = 18

On peut aussi voir le problème comme la recherche d'une quatrième proportionnelle : il faut trouver n tel que :

\dfrac{n}{120} = \dfrac{15}{100} ce qui conduit à n =  120 \times \dfrac{15}{100}

Le prix hors taxes d'un objet est 120 €. Le taux de TVA est de 5 %. Celle-ci s'élève par conséquent à 6 € car :

120\times5\ %=120\times\dfrac{5}{100}=120\times0,05=6

Retrouver la valeur de référence (pourcentage «indirect»)

Cette valeur de référence se trouve en divisant la valeur étudiée ou la population partielle par le décimal associé au pourcentage.

Dans une assemblée il y a 36 femmes, elles représentent 30 % de l'assemblée par conséquent l'assemblée est constituée de 120 individus car :

\dfrac{36}{0,3}= 120

On peut aussi voir le problème comme la recherche d'une quatrième proportionnelle : il faut trouver N tel que :

 \dfrac{36}{N}=\dfrac{30}{100} soit 36 \times 100 = 30 \times N soit N = \dfrac{36 \times 100}{30}

Le prix TTC d'un objet est de 198 €. Ce prix représente 119, 6 % du prix HT. Le prix HT (hors taxe) est par conséquent de 165, 55 € car

\dfrac{198}{1,196} \approx 165,55

Pourcentage d'augmentation et de réduction

En économie et dans les taux d'intérêts, l'étude porte sur des variations en pourcentage, des augmentations ou des réductions. On peut particulièrement décomposer le calcul en deux temps : calcul de l'augmentation ou de la réduction, puis calcul de la valeur finale en effectuant une addition ou une soustraction. Mais il est préférable de voir ces augmentations ou ses réductions comme issues de l'application d'un cœfficient multiplicateur. Seul cet aspect des choses sert à retrouver efficacement une valeur de référence ou d'appliquer des augmentations successives.

Calculer la valeur finale

Une augmentation de t % se traduit par une multiplication par 1+\dfrac{t}{100}, et une diminution de t % par une multiplication par 1-\dfrac{t}{100}.

Des variations successives à taux fixe amènent à des progressions géométriques. Ainsi, augmenter 35 fois de 2 % revient à multiplier par 1, 0235, c'est-à-dire 1, 99989, soit presque par 2. Et diminuer 35 fois de 2 % revient à multiplier par 0, 9835, c'est-à-dire à diviser par 2, 028, soit légèrement plus de 2.


Cœfficients multiplicateur ou diviseur et pourcentages

Si un prix par exemple a été multiplié par un cœfficient C ceci correspond à une augmentation de t % telle que 1+\dfrac{t}{100}=C. Soit t=100\times (C-1). De telle sorte que si un prix a été multiplié par 8 en 10 ans cela correspond à une augmentation de t=100\times (8-1). soit une augmentation de 700 % en 10 ans et non pas 800 % comme on pourrait le croire. De même un prix multiplié par 2 correspond à une hausse de 100 %.

Pour une baisse, si un prix a été divisé par un cœfficient D ceci correspond à une baisse de t % telle que 1-\dfrac{t}{100}=\dfrac{1}{D}. soit toujours \dfrac{t}{100}=\dfrac{D-1}{D}. d'où t=100\times \dfrac{D-1}{D}. Ainsi, si un prix a été divisé par 2 cela correspond à une baisse de t=100\times \dfrac{2-1}{2}=100\times \dfrac{1}{2}. soit 50 %. Pour un prix divisé par 4 la baisse est de t=100\times \dfrac{4-1}{4}=100\times \dfrac{3}{4}. soit 75 %.

Retrouver la valeur de référence (pourcentage "indirect")

Pour retrouver la valeur de référence, il suffit alors de diviser la valeur finale par le cœfficient multiplicateur.

Après une remise de 15 % le prix d'un objet n'est plus que de 34 €, le prix d'origine de l'objet était par conséquent de 40 € car :

la réduction correspond à une multiplication par 1 - 0, 15 = 0, 85
\dfrac{34}{0,85}=40

Pourcentage de pourcentage

On peut être amené à multiplier entre eux des pourcentages. C'est le cas par exemple des pourcentages de pourcentage. Dans cette assemblée, il y a 36 % de femmes et 25 % de ces femmes sont âgées de plus de 50 ans. Il y a par conséquent 9 % de femmes âgées de plus de 50 ans dans l'assemblée car :

\dfrac{25}{100}\times \dfrac{36}{100}= \dfrac{9}{100}

On peut voir le problème en se ramenant à une assemblée de 100 personnes. Parmi celles-ci 36 seraient des femmes et 25 % de ces 36 femmes seraient âgées de plus de 50 ans. Or 25 % de 36 correspond à 9 par conséquent dans une assemblée de 100 personnes, il y aurait 9 femmes de plus de cinquante ans.

Pourcentages courants

Notation en
français fraction décimal pour-cent
un millième 1/1000 0, 001 0, 1 %
un centième 1/100 0, 01 1 %
un dixième 1/10 0, 1 10 %
un cinquième 1/5 0, 2 20 %
un quart 1/4 0, 25 25 %
un tiers 1/3 0, 33… 33, 3… %
une moitié 1/2 0, 5 50 %
deux tiers 2/3 0, 66… 66, 6… %
trois quarts 3/4 0, 75 75 %
neuf dixièmes 9/10 0, 9 90 %
99 centièmes 99/100 0, 99 99 %
999 millièmes 999/1000 0, 999 99, 9 %
le tout 1/1 1 100 %
le double 2/1 2 200 %

Usage des pourcentages

Statistique

En statistique, lorsque on étudie une variable statistique, les effectifs associés aux différentes valeurs du caractère sont quelquefois complexes à bien évaluer. Se ramener alors a une population de 100, revient à présenter des répartitions sous formes de pourcentage. On parle alors de fréquence.

On rencontre les pourcentages dans les sondages d'opinion tandis que la population interrogée est rarement de 100 personnes. On les rencontre aussi dans les résultats d'élections.

Domaine économique ou financier

Dans les finances, on rencontre les pourcentages dans les calculs de TVA : une TVA de 19, 6 % consiste à ajouter à un prix hors taxes (prix HT) une taxe correspondant à 19, 6 % du prix HT. On obtient alors un prix toutes taxes comprises (prix TTC) qui correspond au prix HT multiplié par 1, 196.

On les rencontre aussi dans les taux d'intérêts : une somme positionnée ou empruntée pendant un an à un taux d'intérêt de t % a été multipliée en fin d'année par 1+\dfrac{t}{100}.

Les taux d'imposition qui représentent une fraction du revenu d'un ménage sont aussi exprimés sous forme de pourcentage.

En économie, un indice est la valeur d'une grandeur économique comparé à une valeur de référence. A titre d'exemple, si, en 2004, le prix moyen des appartements au mètre carré dans une ville a augmenté de 22 % comparé à l'année 2000, servant de référence (indice 100), on dira que l'indice du prix moyen des appartements est de 122 en 2004. L'indice est par conséquent une présentation spécifique d'un pourcentage.

Topographie

Panneau routier indiquant une pente de 10 % ou un angle de 5, 71°

Les panneaux routiers indiquent les pentes des routes en pourcentage. Une pente de 10 % veut dire qu'à un déplacement horizontal de 100 m, correspond un déplacement vertical de 10 m. La pente correspond alors à la tangente de l'angle d'inclinaison de la route.

Métrologie

En métrologie, les mesures ne peuvent pas être connues avec une précision absolue. Les calculs d'erreur ou les calculs d'incertitude sont fréquemment présentés en pourcentage. Lorsque on dit que le poids d'une conserve est connu à 5 % près, cela veut dire que, si le poids de la conserve est supposé valoir 500 grammes, il peut se glisser une erreur de 25 grammes en excès ou en défaut.

Œnologie

En œnologie, le degré alcoolique d'une boisson alcoolisée est le pourcentage en volume d'alcool pur contenu dans une boisson. Ainsi, si on prend un verre de 100 ml de vin titré à 12 % vol, on absorbe 12 ml d'alcool pur soit à peu près 12 \times 0,8= 9,6 grammes d'alcool pur.

Le terme de degré pris à la place de pourcentage provient de l'ancienne unité utilisée : le degré Gay-Lussac (GL). Un degré GL correspondant à un pourcentage d'alcool pur de 1 %.

Dangers et pièges

L'importance des pourcentages dans l'analyse des données statistiques, leur présence dans les résultats de sondages et dans les indicateurs économiques leur confèrent un statut officiel de science. Cependant, le pourcentage est une vision réductrice d'une réalité et son usage abusif pour conduire à des erreurs de raisonnement que Sylviane Gasquet souligne dans son ouvrage Plus vite que son nombre.

Le pourcentage n'est pas une quantité

La représentation du pourcentage sous forme d'une fraction, sa transformation en décimal, lui confère un statut apparent de nombre mais il n'a pas les qualités normalement attribuées à un nombre : il n'est pas envisageable d'effectuer des sommes de pourcentage dans l'absolu. On ne peut pas faire de sommes de pourcentage et leur donner un sens, sauf si ces pourcentages correspondent à deux populations partielles disjointes associées à la même population de référence. Surtout deux augmentations successives de 10 % ne donnent pas une augmentation de 20 % mais de 21 %. Quant au produit de pourcentage, il obéit à des règles particulièrement restrictives. De même, comparer des pourcentages peut se révéler mener à des contresens si la population de référence change dans les deux comparaisons.

L'importance de l'univers de référence

Le fait de ramener l'effectif à 100 tend à donner moins d'importance à la population de référence qui quelquefois même disparaît du discours final. Cela peut induire un certain nombre de contresens.

Deux phénomènes peuvent contribuer à l'augmentation d'un pourcentage : l'augmentation de la population partielle, la diminution de la population totale.

Un mauvais choix de l'univers de référence induit le lecteur à une mauvaise interprétation du pourcentage. Sylviane Gasquet cite l'exemple du redoublement en seconde : dans l'expression, il y a 50 % de redoublement en seconde, l'univers de référence a disparu. Il faudrait dire, dans une classe de seconde, 50 % des élèves sont amenés à redoubler. Comme la moitié de la classe est déjà constituée de redoublants qui, on l'espère ne vont pas tripler, c'est que 100 % des non-redoublants sont condamnés à redoubler.

Un taux de TVA s'applique au prix hors taxe et non au prix TTC.

Pourcentage et point

Lorsque une population partielle est passée de 10 % à 12 %, il est délicat de parler de l'augmentation. Une erreur fréquente est de dire que la population a augmenté de 2 %. En effet, en supposant que la population de référence soit de 100 individus et ne change pas entre la première et la seconde mesure (ce qui est rarement le cas), la population partielle passerait de 10 individus à 12 individus, soit une multiplication par 1, 2 c'est-à-dire une augmentation de 20 %. Or néenmoins, il est utile de chiffrer cette variation : premier pourcentage 10 %, second 12 %. On parle alors d'une augmentation de 2 points.

Pourcentage composé

Lors de hausses et de baisses successives, la tentation est grande d'ajouter et soustraire les pourcentages d'augmentation.

Il est tentant de penser qu'une augmentation de 10 % suivie d'une baisse de 10 % ramène à la valeur d'origine. Mais ces pourcentages ne correspondent pas à la même population de référence. En reprenant la technique du cœfficient multiplicatif et l'appliquant à une quantité Q on s'aperçoit que les 10 % d'augmentation reviennent à multiplier la quantité Q par 1, 1 et que la réduction, s'appliquant à 1,1 \times Q, revient à multiplier cette quantité par 0, 9. Or 0,9\times 1,1 \times Q = 0,99 \times Q ce qui correspond à une baisse de 1 %.

Voir aussi

Bibliographie

Liens externes

Notes et références

  1. voir en anglais ce site ou ce dernier
  2. Cf. paragraphe «5.3.7 - Valeur des grandeurs sans dimension, ou grandeurs de dimension un» (en haut de la page 46) de la brochure intitulée Le Dispositif international d'unités (8e édition, 2006) publiée par le Bureau international des poids et mesure (BIPM), Pavillon de Breteuil, consultable à l'adresse http ://www. bipm. org/utils/common/pdf/si_brochure_8_fr. pdf
  3. Typographie : les règles de la ponctuation française sur le site Rêve-En-Joie Poésie.

Recherche sur Amazone (livres) :



Ce texte est issu de l'encyclopédie Wikipedia. Vous pouvez consulter sa version originale dans cette encyclopédie à l'adresse http://fr.wikipedia.org/wiki/Pourcentage.
Voir la liste des contributeurs.
La version présentée ici à été extraite depuis cette source le 10/03/2010.
Ce texte est disponible sous les termes de la licence de documentation libre GNU (GFDL).
La liste des définitions proposées en tête de page est une sélection parmi les résultats obtenus à l'aide de la commande "define:" de Google.
Cette page fait partie du projet Wikibis.
Accueil Recherche Aller au contenuDébut page
ContactContact ImprimerImprimer liens d'évitement et raccourcis clavierAccessibilité
Aller au menu