Mesure algébrique

En géométrie, une mesure algébrique est une longueur affectée d'un signe, ce qui permet d'en orienter le sens sur un axe donné.



Catégories :

Distance et longueur - Géométrie affine

Recherche sur Google Images :


Source image : mathsgeo.net
Cette image est un résultat de recherche de Google Image. Elle est peut-être réduite par rapport à l'originale et/ou protégée par des droits d'auteur.

Page(s) en rapport avec ce sujet :

  • mesure algébrique) est le même que le rapport de projection de De sur D avec... distance des points à la droite n'a pas d'unité de longueur.... (source : www-lemm.univ-lille1)

En géométrie élémentaire

En géométrie, une mesure algébrique est une longueur affectée d'un signe, ce qui permet d'en orienter le sens sur un axe donné.

Ainsi, tandis que la longueur d'un segment est toujours positive, on peut utiliser une mesure algébrique de ce segment, qui sera égale à sa longueur si on la prend dans un sens, ainsi qu'à l'opposé de sa longueur si on la prend dans l'autre.

La notation qui différencie une mesure algébrique relative à un segment de la longueur de ce dernier consiste à placer une barre horizontale au-dessus des lettres qui représentent les deux points du segment. Tandis que l'ordre des lettres n'a pas d'importance dans la notation d'une longueur, il définit précisément le signe de la mesure algébrique, puisque la première lettre sert à désigner le point de départ et la seconde sert à désigner le point d'arrivée.

Exemple : pour un segment AB (ou BA, ce qui est équivalent), la mesure algébrique peut être \overline{AB} ou \overline{BA}. Si on suppose que l'axe est orienté de A vers B, alors \overline{AB} = AB et \overline{BA} = -AB, et vice versa.

En géométrie affine

La notion de mesure algébrique apparaît dans certains énoncés de résultats (théorème de Thalès, théorème de Ceva, théorème de Ménélaüs) qui ne nécessitent nullement que soit définie une unité de «longueur», ni même que l'espace où on travaille soit fondé sur le corps des réels.

En premier lieu, étant donnés deux points A et B d'un espace affine, il est envisageable de définir[1] la mesure algébrique \overline{AB} par conséquent qu'on a préalablement privilégié un vecteur \vec u parmi ceux dirigeant la droite (AB)  : la notation \overline{AB} désignera simplement l'unique scalaire λ tel que \vec{AB}=\lambda \vec u. Ceci généralise bien la définition «naïve» : si on est sur une droite orientée dans un espace affine euclidien, on retrouve la même quantité que plus haut si on prend pour \vec u le vecteur unitaire orientant (AB) et pointant dans le sens indiqué par l'orientation.

Plus particulièrement, quand interviennent des rapports de mesures algébriques, il n'est plus besoin de disposer d'un vecteur de référence. Étant donnés trois points alignés A, B et C d'un espace affine (et rien d'autre), tels que A\not=C, on peut définir[2] la quantité

{\overline{AB}\over\overline{AC}}

comme l'unique scalaire λ tel que \overrightarrow{AB}=\lambda\,\overrightarrow{AC}.

Notes et références

  1. Cette définition est par exemple disponible dans le cours de Mathématiques de L. Lesieur et C. Joulain, Armand Colin, 1966, tome I, p. 223.
  2. Voir par exemple la note 2.4.6 dans le traité de Géométrie de Marcel Berger (tome 1, p. 68 dans l'édition de 1979 - CEDIC Fernand Nathan). Marcel Berger note ce scalaire {\overrightarrow{AB}\over\overrightarrow{AC}}, ce qui souligne que cette notion de «rapport» prend son sens indépendamment de celle de mesure algébrique. On peut d'ailleurs remarquer que la langue allemande donne un nom à ce rapport («Teilverhältnis») pour lequel existe une notation spécifique (TV (B, C, A) ) - voir par exemple (de) un aide-mémoire de géométrie affine de Bernard Kabelka, disponible en ligne sur le site de l'univsrsité technique de Vienne (consulté le 30 septembre 2007).

Recherche sur Amazone (livres) :



Ce texte est issu de l'encyclopédie Wikipedia. Vous pouvez consulter sa version originale dans cette encyclopédie à l'adresse http://fr.wikipedia.org/wiki/Mesure_alg%C3%A9brique.
Voir la liste des contributeurs.
La version présentée ici à été extraite depuis cette source le 10/03/2010.
Ce texte est disponible sous les termes de la licence de documentation libre GNU (GFDL).
La liste des définitions proposées en tête de page est une sélection parmi les résultats obtenus à l'aide de la commande "define:" de Google.
Cette page fait partie du projet Wikibis.
Accueil Recherche Aller au contenuDébut page
ContactContact ImprimerImprimer liens d'évitement et raccourcis clavierAccessibilité
Aller au menu