Loi des sinus

En trigonométrie, la loi des sinus est une relation de proportionnalité entre les longueurs des côtés d'un triangle et les sinus des angles respectivement opposés.



Catégories :

Trigonométrie - Mathématiques élémentaires - Géométrie du triangle

Recherche sur Google Images :


Source image : defl.ca
Cette image est un résultat de recherche de Google Image. Elle est peut-être réduite par rapport à l'originale et/ou protégée par des droits d'auteur.

Page(s) en rapport avec ce sujet :

  • Sin, cos et tan - Loi des sinus - Loi des cosinus - Aire d'un triangle... Le sinus est le rapport du côté opposé à l'angle par l'hypoténuse.... (source : recitmst.qc)
  • Avec ces formules on peut calculer les cosinus des angles du triangle à partir des ... Loi des sinus. S est l'aire du triangle ABC, R est le rayon du cercle... (source : pagesperso-orange)
  • La loi des sinus. On se propose d'établir le théorème affirmant que les côtés d'un triangle sont proportionnels aux sinus des angles... (source : mathforu)
Fig. 1 - Notations usuelles dans un triangle quelconque.

En trigonométrie, la loi des sinus est une relation de proportionnalité entre les longueurs des côtés d'un triangle et les sinus des angles respectivement opposés.

On considère un triangle quelconque ABC, représenté sur la Fig. 1 ci-contre, où les angles sont désignés par les minuscules grecques et les côtés opposés aux angles par la minuscule latine correspondante :

Alors,

\,\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma} = \frac{abc}{2 S} = 2R,

R est le rayon du cercle circonscrit au triangle ABC et

S = \sqrt{p(p-a)(p-b)(p-c)}

est l'aire du triangle donnée à partir du demi-périmètre p par la formule de Héron.

La relation de proportionnalité est quelquefois résumée ainsi :

\,a\,:\,b\,:\,c = \sin\alpha\,:\,\sin\beta\,:\,\sin\gamma
Fig. 2 - Résolution d'un triangle par la loi des sinus

Le théorème est parfois utilisé


Généralisation aux géométries non euclidiennes

Fig. 3 - Triangle sphérique : dimensions réduites a, b et c ; angles α, β et γ.

Pour une surface non euclidienne de courbure K, on note ρ le rayon de courbure. Il vérifie

\,\rho = 1/\sqrt{|K|}.

On définit alors les dimensions réduites du triangle :

\,a = BC/\rho,
\,b = AC/\rho,
\,c = AB/\rho.

Dans le cas d'un triangle sphérique, a, b et c correspondent à la mesure angulaire des segments de grand arc [BC], [AC] et [AB] (voir Fig. 3).

Géométrie sphérique

Dans un triangle sphérique ABC dessiné sur la sphère de centre O et de rayon ρ (Fig. 3), la loi des sinus s'écrit

\frac{\sin a}{\sin\alpha} = \frac{\sin b}{\sin\beta} = \frac{\sin c}{\sin\gamma} = \frac{6 V_{\mathrm{OABC}}}{\rhoˆ3\sin a\,\sin b\,\sin c} ,

VOABC est le volume du tétraèdre OABC.

Géométrie hyperbolique

Dans un triangle hyperbolique, la loi des sinus s'écrit

\frac{\sinh a}{\sin\alpha} = \frac{\sinh b}{\sin\beta} = \frac{\sinh c}{\sin\gamma}.

Généralisation à l'espace euclidien

On considère un tétraèdre A1A2A3A4 de l'espace euclidien. La figure 3 ci-contre présente les notations concernant les sommets, faces et angles dans le tétraèdre :

Fig. 3 - Tétraèdre : faces et angles diédraux.


On définit le sinus de l'angle triédral constitué par les sommets A1, etc. comme suit

Alors

 \frac{S_1}{\sin A_1} = \frac{S_2}{\sin A_2} = \frac{S_3}{\sin A_3} = \frac{S_4}{\sin A_4} = \frac{2S_1S_2S_3S_4}{9V},

où V est le volume du tétraèdre.

Voir aussi

Bibliographie

Recherche sur Amazone (livres) :



Ce texte est issu de l'encyclopédie Wikipedia. Vous pouvez consulter sa version originale dans cette encyclopédie à l'adresse http://fr.wikipedia.org/wiki/Loi_des_sinus.
Voir la liste des contributeurs.
La version présentée ici à été extraite depuis cette source le 10/03/2010.
Ce texte est disponible sous les termes de la licence de documentation libre GNU (GFDL).
La liste des définitions proposées en tête de page est une sélection parmi les résultats obtenus à l'aide de la commande "define:" de Google.
Cette page fait partie du projet Wikibis.
Accueil Recherche Aller au contenuDébut page
ContactContact ImprimerImprimer liens d'évitement et raccourcis clavierAccessibilité
Aller au menu