Icosaèdre

En mathématiques, et plus exactement en géométrie, un icosaèdre est un solide de dimension trois, de la famille des polyèdres, c'est-à-dire que sa surface se compose d'un nombre fini de polygones...



Catégories :

Polyèdre

Recherche sur Google Images :


Source image : fr.wikipedia.org
Cette image est un résultat de recherche de Google Image. Elle est peut-être réduite par rapport à l'originale et/ou protégée par des droits d'auteur.

Définitions :

Icosaèdre
Icosaèdre

Type Polyèdre régulier
Faces Triangle
Éléments :
 · Faces
 · Arêtes
 · Sommets
 · Caractéristique
 
20
30
12
2
Faces par sommet 5
Sommets par face 3
Isométries A5xC2
Dual Dodécaèdre
Propriétés Deltaèdre régulier et convexe

En mathématiques, et plus exactement en géométrie, un icosaèdre est un solide de dimension trois, de la famille des polyèdres, c'est-à-dire que sa surface se compose d'un nombre fini de polygones et qu'il se décrit avec ses sommets ou de ses arêtes ou encore de ses différentes faces. Plus précisément, un icosaèdre est un polyèdre contenant précisément vingt faces. Le préfixe icosa-, d'origine grecque, fait référence au nombre de faces.

Il existe un icosaèdre régulier convexe. Le polyèdre est dit régulier si l'ensemble des arêtes possèdent la même longueur et si l'ensemble des angles entre deux arêtes partageant un sommet et une même face sont égaux. Si tout segment dont les extrémités sont à l'intérieur du polyèdre est totalement à l'intérieur du polyèdre, on parle de convexité. Il existe 5 polyèdres à la fois réguliers et convexes, ils sont nommés solides de Platon, en l'honneur du philosophe grec Platon.

Le squelette de l'icosaèdre régulier, la totalité de ses sommets reliés par ses arêtes, forme un graphe nommé graphe icosaédrique.

Le groupe des rotations de l'icosaèdre est celui constitué par les rotations de l'espace qui laissent invariant la position globale de l'icosaèdre, tout en permutant certaines faces. Il comporte 60 éléments et est une copie du groupe alterné de degré 5.

Un autre solide de Platon partage avec l'icosaèdre le même groupe de rotations, le dodécaèdre. On obtient un dodécaèdre en considérant le solide dont les sommets sont les centres des faces d'un icosaèdre. Réciproquement, on obtient un icosaèdre en considérant le solide ayant pour sommets les centres des faces d'un dodécaèdre. On dit que les solides de Platon icosaèdre et dodécaèdre sont duaux.

Géométrie de l'icosaèdre régulier convexe

Construction manuelle d'un icosaèdre

Si le bol inférieur est bleu et celui supérieur rouge, on obtient la figure illustrée ici.
Il existe de nombreux patrons de l'icosaèdre régulier, ce dernier est un exemple.

Un icosaèdre se construit avec 20 triangles équilatéraux de même dimension. On débute par assembler 5 des triangles par leurs arêtes de telle manière qu'ils forment un bol avec une pointe en bas. Ainsi la base du solide est un sommet partagé par les 5 triangles et le bord se compose de 5 segments, tous de même longueur, formant un pentagone régulier. Sur chacun des 5 segments formant la surface du bol, on colle un nouveau triangle de façon à ce que le côté supérieur de chaque triangle du bol soit aussi le côté inférieur d'un des 5 triangles ajoutés. On redresse ensuite les 5 triangles supérieurs de façon à ce que leurs faces soient verticales. On obtient alors un bol plus vaste, composé de 10 triangles, et dont la partie supérieure est constituée de 5 dents.

On construit une deuxième forme semblable à la première. On a alors utilisé l'intégralité des 20 triangles. La seconde forme s'emboite précisément dans la première, formant un polyèdre régulier. Il est illustré sur la figure de droite, le bol inférieur est bleu. On remarque sa calotte inférieure, puis les 5 dents, dont 3 sont face à un observateur et 2 derrière. Le bol supérieur, en rouge sur la figure possède la même géométrie. Pour les emboiter, il suffit de placer la calotte en haut et 2 dents en face de l'observateur.

On peut toujours construire l'icosaèdre à l'aide du patron illustré sur la figure de droite. L'icosaèdre s'obtient en collant le côté libre du triangle jaune en haut à gauche sur le côté libre du triangle orange, en bas à droite. Les 5 triangles rouges, connexes aux triangles orange sont alors approchés pour que leurs sommets libres se confondent en un seul point. La même opération, effectuée sur les 5 triangles rouges, connexes aux triangles jaunes, termine la construction de l'icosaèdre. Le patron présenté ici est un exemple, il en existe bien d'autres. On en trouve 43.380[1].

Propriétés

Un icosaèdre comporte 20 faces. Il possède 12 sommets, 1 en bas, 5 à la base inférieure des dents décrites dans la première construction et tout autant pour le bol supérieur. Il possède 30 arêtes, chacun des 12 sommets possède 5 arêtes, soit 60, mais comme une arête contient 2 sommets, il faut diviser 60 par 2 pour obtenir le bon résultat.

Sommets, arêtes et faces —  Un icosaèdre régulier convexe contient 12 sommets, 30 arêtes et 20 faces.

Il existe une sphère de centre celui de l'icosaèdre, contenant l'ensemble des sommets du polyèdre.
Le cube circonscrit de l'icosaèdre contient l'ensemble des sommets du polyèdre.

Les plus grands segments inclus dans le polyèdres ont tous pour extrémités deux sommets du polyèdre. Il en existe 6 et l'intersection de ces 6 segments est un point, nommé centre du polyèdre. Ce point est aussi le centre de gravité du solide. Il existe 10 segments d'extrémités deux points de la surface du polyèdre, passant par le centre et de longueur minimale. Les extrémités sont les centres de deux faces opposées, elles sont parallèles entre elles. Ces remarques géométriques permettent de qualifier la sphère circonscrite et celle inscrite du solide. La sphère circonscrite est celle de plus petit rayon dont l'intérieur contient l'intérieur du polyèdre. Cette définition généralise celle de cercle circonscrit. On peut de même parler de sphère inscrite pour désigner celle de plus grand rayon dont l'intérieur est inclus dans l'intérieur du solide, généralisant ainsi la définition de cercle inscrit.

Sphère circonscrite et inscrite —  La plus petite sphère dont l'intérieur contient l'intérieur de l'icosaèdre est de même centre que le solide, elle contient l'ensemble des sommets du polyèdre. La plus grande sphère contenue dans l'icosaèdre est aussi de même centre que le solide, elle contient le centre de chaque face du polyèdre.

Une analyse rapide pourrait laisser penser qu'il existe un cercle contenant 6 des sommets du polyèdre, il n'en est rien. Un cercle contient un maximum de 5 sommets. Cette erreur est , par exemple, commise par Albrecht Dürer[2], un peintre du XVIe siècle. Par contre, Dürer ne commet pas d'erreur lorsqu'il affirme que :

Cube circonscrit —  Le plus petit cube contenant l'icosaèdre est de même centre que le solide, sa surface contient l'ensemble des sommets du polyèdre.

Cette propriété est illustrée sur la figure de droite. Chacune des faces du cube contient deux sommets et une arête du polyèdre. Le cube contient 6 faces, par conséquent les 12 sommets.

La structure de ce polyèdre est régulière. Les arêtes possèdent toutes la même longueur, deux arêtes d'une même face et possédant un sommet commun forment toujours le même angle, égal à 60 degré ou encore à π/3, si la mesure de l'angle est le radian. Le nombre d'arêtes partageant un même sommet est une constante qui ne dépend pas du sommet choisi[3]. On parle de polyèdre régulier. Un segment ayant ses deux extrémités à l'intérieur du solide est totalement à l'intérieur du solide, on dit que l'icosaèdre est convexe. Une autre manière de voir les choses est de remarquer qu'un élastique qui entoure le solide le touche en chaque point. Ces deux manières de voir sont équivalentes. Les polyèdres réguliers ne sont pas forcément convexes, un contre exemple est donné suite à l'article. Les polyèdres réguliers convexes sont nommés solide de Platon.

Solide de Platon —  Il existe un icosaèdre, c'est-à-dire un polyèdre à 20 faces, qui est à la fois régulier et convexe. On dit que ce volume est un solide de Platon.

Rotation et symétrie

Une rotation laisse globalement invariant l'icosaèdre, quand l'image du solide par la rotation occupe précisément la même position que celle d'origine. Les sommets, les arêtes et les faces sont peut-être permutés, mais la position globale est inchangée.

Rotations de l'icosaèdre —  Il existe 60 rotations laissant globalement invariant l'icosaèdre : la rotation d'angle nul, 15 rotations d'un demi-tour, 20 rotations d'un tiers de tour et 24 rotations d'un angle multiple d'un cinquième de tour.

Rotation d'un demi-tour des sommets de l'icosaèdre

Dans le cas d'un solide de Platon, une rotation qui laisse globalement invariant l'icosaèdre possède un axe qui traverse obligatoirement le centre du solide et qui passe, soit par un sommet, soit par le milieu d'une arête, soit par le milieu d'une face.

Étudions, tout d'abord, les rotations dont l'axe contient le centre d'une arête. Pour comprendre leur nature, le plus simple est de regrouper les points dans des plans perpendiculaires à l'axe de la rotation. Ce regroupement est effectué sur la figure de droite. Il met en évidence cinq ensembles. Les deux extrêmes, en bleu, sont composés de deux points formant les arrêtes qui délimitent le solide et qui croisent en leur milieu l'axe étudié. On trouve ensuite deux ensembles de deux points, illustré en rouge sur la figure, qui se trouvent sur deux droites perpendiculaires à la fois aux segments bleus ainsi qu'à l'axe de rotation. Enfin, au milieu du polyèdre, on trouve 4 points formant un rectangle. Ces 5 figures sont invariantes par une rotation d'un demi-tour. On en déduit l'existence d'une rotation d'un demi-tour pour chaque couple d'arêtes localisées aux antipodes l'une de l'autre. Comme il existe 30 arêtes, on a 15 rotations d'un demi-tour. Aucune autre rotation autour de l'axe ne laisse invariant le solide, à l'exception de la rotation identité. En effet, les autres rotations ne laissent pas invariant un segment perpendiculaire à l'axe de rotation et non réduit à un point.

Rotation d'un tiers de tour des sommets de l'icosaèdre

Il existe deux autres axes de rotations, qui forment avec le premier, 3 axes dont les rotations d'un demi-tour laissent globalement invariant l'icosaèdre. Ces trois axes sont perpendiculaires entre eux, les rotations commutent entre elles.

La figure de gauche illustre le cas d'un axe passant par le centre du solide et qui traverse la surface du polyèdre par le centre de deux faces opposées. La même technique que celle utilisée auparavant regroupe cette fois ci les sommets en quatre ensembles. Par construction, les deux ensembles extrêmes sont des faces. Ce sont des triangles équilatéraux de même dimension et pivotés de demi-tour, l'un comparé à l'autre. Les deux ensembles centraux, en violet sur la figure, sont aussi des triangles équilatéraux, de dimensions plus grandes. Une rotation d'un demi-tour est indispensable pour faire coïncider deux triangles localisés l'un à côté de l'autre. L'axe étudié traverse chacun des 4 triangles en son centre, on en déduit qu'à l'exception de la rotation d'un angle nul, seul les rotations d'un tiers de tour, dans un sens ou dans un autre laissent les sommets invariants.

Rotations d'un multiple d'un cinquième de tour des sommets de l'icosaèdre

Il existe 2 rotations d'un tiers de tour par couple de faces. Le solide contient 20 faces, on en déduit qu'il existe 20 rotations de cette nature.

La figure en bas à droite du paragraphe illustre le cas d'un axe passant par le centre du solide et qui traverse la surface du polyèdre par deux sommets opposés. Les sommets sont toujours regroupés en 4 ensembles. Les deux extrêmes sont composés d'un unique point, les deux ensembles les plus proches du centre forment chacun un pentagone régulier. Ils sont de même dimension et sont toujours décalés d'un demi tour. Les seules rotations qui laissent globalement invariant un pentagone sont celles d'un angle multiple d'un cinquième de tour.

Il existe 4 rotations d'axes passant par deux sommets, laissant globalement invariant le solide, si on néglige la rotation d'angle nul. Il existe 12 sommets et 6 axes contenant deux sommets opposés, soit 24 rotations de cette nature.

Une fois déterminée les rotations, il devient simple de trouver les autres isométries, c'est-à-dire celles correspondant à des réflexions ou à une symétrie centrale. On les nomme quelquefois symétrie impropre, en opposition à symétrie propre qui ne sert à désigner que les rotations. Une symétrie impropre est une isométrie qui n'est pas une rotation, ou encore dont le déterminant est égal à -1. La composée de deux symétries impropres est une rotation.

La première symétrie impropre à laquelle on peut penser est la symétrie centrale γ de centre celui du polyèdre. Les différentes illustrations précédentes montrent toutes qu'elle laisse globalement invariant le solide. Si σ est une symétrie impropre quelconque, sa composée avec γ est une rotation, notée ici ρ. L'isométrie γ est involutive, c'est-à-dire qu'appliquer deux fois γ revient à ne pas bouger le solide. On en déduit que σ est la composée d'une des rotations déjà explicitée avec γ. Si ρ1 et ρ2 sont deux rotations différentes, alors γ. ρ1 et γ. ρ2 sont deux symétries différentes. Pour s'en rendre compte, il suffit que composer ces deux symétries par γ, on obtient les deux rotations ρ1 et ρ2 car γ est involutive. Si les deux symétries étaient semblables, leurs composées le seraient aussi, comme ce n'est pas le cas, on en déduit qu'elles sont différentes. Il existe précisément 60 symétries impropres.

La composée d'une symétrie centrale par une rotation d'un angle non nul et dont l'axe contient le centre de symétrie est une réflexion. On en déduit que la totalité des symétries impropre se compose d'une symétrie centrale γ et de 59 réflexions. [4]

Symétries impropres de l'icosaèdre —  Il existe 60 symétries impropres laissant globalement invariant l'icosaèdre : la symétrie centrale de centre celui du solide et 59 réflexions, toutes ayant leur plan de symétrie contenant le centre du solide.

Figures remarquables de l'icosaèdre

Les polygones associés au nombre d'or sont présent dans l'icosaèdre.

Les symétries d'ordre 3 et 5 introduisent les figures géométriques planes associées à ces symétries.

Une symétrie plane d'ordre 3 a pour groupe de symétrie le triangle équilatéral (cf Réseau (géométrie) ) . Il est naturel d'en trouver la trace dans l'icosaèdre. Il est envisageable de construire de tels triangles avec les différents sommets du solide. Chaque axe passant par le centre de deux faces opposées traverse en leurs centres 4 triangles équilatéraux. Deux de ces triangles sont des faces. Les deux autres, représentés en violet sur la figure du paragraphe précédent, ont un côté en proportion d'extrême et moyenne raison comparé à une arête du polyèdre. Ceci veut dire que le côté d'un rectangle violet, divisé par la longueur d'une arête est égal au nombre d'or.

Pour chaque paire de faces, on trouve 2 petits triangles équilatéraux et 2 grands, soit un total de 12 petits triangles équilatéraux et tout autant de grands.

La présence du nombre d'or n'est guère étonnante, elle intervient dans l'expression d'une rotation d'ordre 5 et donc dans les rapports de dimensions d'un pentagone. Parallèlement à chaque axe passant par deux sommets opposés, on trouve deux pentagones dont le plan est orthogonal à l'axe. Chaque sommet du pentagone est aussi un sommet de deux triangles d'or de géométries différentes. Un triangle est dit d'or lorsqu'il est isocèle et que le grand et le petit côté sont en proportion d'extrême et de moyenne raison. Il en existe deux types différents, ceux ayant deux grands côtés, en gris sur la figure de droite et ceux ayant deux petits côtés, en jaune. Chaque sommet d'un pentagone est le sommet adjacent à deux côtés égaux d'un triangle d'or de chaque type. La figure contient 2 pentagones, soit 10 sommets et 20 triangles d'or. Il existe 6 axes différents passant par deux sommets opposés, soit 120 triangles d'or.

On trouve aussi des rectangles d'or, c'est-à-dire des rectangles dont la longueur et la largeur ont un rapport égal au nombre d'or. On en trouve précisément 1 par coté du pentagone, le deuxième coté se situe alors sur l'autre pentagone. Un exemple est illustré en vert sur la figure de droite. Comme il existe 5 paires d'arêtes de cette nature pour chaque couple de pentagones, on trouve 30 rectangles d'or.

Polyèdre dual

Article détaillé : Polyèdre dual.
Le polyèdre dual d'un dodécaèdre est un icosaèdre.

A l'aide d'un polyèdre régulier, il est envisageable d'en construire un nouveau, de sommets les centres des faces du solide d'origine. Le dual d'un solide de Platon est toujours un solide de Platon.

Dans le cas d'un icosaèdre, le dual possède 20 sommets et chaque face est un pentagone régulier car chaque sommet est partagé par 5 arêtes. Le polyèdre obtenu est un dodécaèdre régulier convexe, un solide composé de 12 faces pentagonales. Réciproquement, le dual d'un dodécaèdre, solide de Platon, est un polyèdre régulier convexe à 12 sommets. Comme chaque sommet du dodécaèdre est partagé par 3 arêtes, les faces de son dual sont des triangles équilatéraux. On reconnaît l'icosaèdre. Cette propriété est générale aux polyèdres, le dual du dual d'un polyèdre est une homothétie du solide d'origine.

Une symétrie qui laisse globalement invariant l'icosaèdre laisse aussi invariant la totalité des milieux de ses faces. On en déduit que toute symétrie de l'icosaèdre est aussi une symétrie du dodécaèdre. Réciproquement, le même raisonnement montre que toute symétrie du dodécaèdre est aussi une symétrie de l'icosaèdre. Les deux ensembles d'isométries, associés aux deux polyèdre duaux sont les mêmes. Ici, le terme de symétrie est utilisé au sens d'isométrie.

Grandeur caractéristique

Le tableau suivant présente les différentes grandeurs caractéristiques de l'icosaèdre régulier convexe[5] :

Dimensions d'un icosaèdre dont la longueur de l'arête est a
Angle diédral \alpha \,=\, \pi-\arcsin\left(\frac 23\right)\, rad \approx 138ˆ{\circ}11'23''
Rayon de la sphère circonscrite r_{ext} \, = \, \frac{a}{2} \sqrt{2+\varphi} = \,\frac{a}{2} \sqrt{\varphi \sqrt 5}  \approx 0{,}95 \, a
Rayon de la sphère inscrite r_{int} \, = \, \frac{a}{6} \sqrt{3}(1 + \varphi)  \approx 0{,}76 \, a
Arête du cube circonscrit c \, = \, a\varphi \approx 1{,}62 \, a
Hauteur de l'icosaèdre
(distance entre deux faces opposées)
h\, = 2 r_{int} \, = \, \frac{a}{3} \sqrt{3}(1 + \varphi)  \approx 1{,}51 \, a
Volume V \, = \, \frac{5(1 + \varphi)}{6}  aˆ3 \approx 2{,}18 \, aˆ3
Fraction de sphère circonscrite occupée  \frac{V} {V_{s}}\, = \,\frac{\sqrt{2 + \varphi}}{\pi}\approx 0{,}61
Surface A\, = \, 5 \sqrt{3} aˆ2 \approx 8{,}66 \, aˆ2
Quotient isopérimétrique 36\pi \frac{Vˆ2}{Aˆ3} = \, \frac{\varphiˆ4 \pi}{15\sqrt 3} \approx 0{,}83

L'angle diédral est l'angle entre deux plans contenant chacun une face de l'icosaèdre. Les deux faces partagent un même sommet.

Fascination de l'icosaèdre

Structure mathématique d'un icosaèdre, solide de Platon

Construction par les coordonnées

Il existe un repère cartésien orthonormal permettant d'exprimer simplement les coordonnées des sommets de l'icosaèdre, si la longueur d'une arête est égale à 2.

La première partie de cet article présente plusieurs résultats mais aucune preuve. L'existence même d'un icosaèdre régulier convexe n'est pas démontrée. Une méthode simple consiste à déterminer des points, candidat à être les sommets d'un polyèdre régulier convexe. La démarche utilisée ici consiste à trouver un ensemble de points E possédant 4 propriétés qui sont vérifiées si ces points sont les sommets de l'icosaèdre :

  • La totalité E possède 12 sommets,
  • il existe une sphère contenant l'ensemble des points de E,
  • Le polyèdre P enveloppe convexe de E, possède des faces formant toutes des triangles équilatéraux et ,
  • si on choisit astucieusement le repère, multiplier n'importe quelle coordonnée d'un sommet par -1 d'un point de E donne toujours un point de E.

La dernière propriété est une conséquence de la stabilité de l'icosaèdre par trois rotations d'un demi-tour et d'axes perpendiculaires deux à deux. Pour obtenir des calculs simples, il est judicieux de fixer la longueur d'une arête à 2 et de positionner celle la plus à droite, parallèle à l'axe des y. On obtient les coordonnées suivantes :

 (\pm \varphi, \pm 1, 0)\,,\quad (\pm 1, 0, \pm\varphi)\quad \text{et}\quad (0,\pm\varphi, \pm 1)

Ici φ sert à désigner le nombre d'or, égal à 1/2. (1 + √5). Une fois les coordonnées établies, on dispose d'une preuve de l'existence d'un icosaèdre régulier convexe à 12 sommets. On peut en effet montrer que P est un polyèdre régulier à 12 sommets. Il suffit de vérifier que pour tout sommet, il existe précisément 5 arêtes contenant ce sommet, qu'elles sont de mêmes longueurs et que ces 5 arêtes définissent bien 5 triangles équilatéraux.

Ces coordonnées permettent aussi de calculer les constantes caractéristiques de l'icosaèdre, décrites dans le paragraphe précédent. [6]

Groupe de symétrie

Article détaillé : Groupe de symétrie.

La loi de composition des isométries d'un espace euclidien de dimension 3 confère à la totalité de ces applications une structure de groupe. Les isométries laissant globalement invariant l'icosaèdre est un sous-groupe, d'ordre 120, dénommé groupe de symétrie de l'icosaèdre. Ce groupe contient lui-même un sous-groupe, composé des rotations, il est dénommé groupe de symétrie propre. Il contient 60 éléments et sa structure est connue. Elle est une copie d'un sous-groupe du groupe des permutations d'un ensemble de 5 éléments. Cette structure de 60 éléments est constitué par l'ensemble des permutations qui s'obtiennent en combinant des permutations qui bougent 3 éléments et en laissent 2 stables, elle porte le nom de groupe alterné de degré 5. L'existence d'une telle structure permet d'étudier l'icosaèdre avec une démarche usant de techniques radicalement différentes et issues de la théorie des groupes. La théorie des représentations d'un groupe fini nous indique que, en un certain sens, il n'existe qu'une manière d'incarner le groupe A5, en un ensemble de 60 rotations d'un espace euclidien de dimension 3 (les démonstrations sont données dans l'article groupe alterné) . On peut, avec cette théorie, démontrer rigoureusement l'existence d'un solide de Platon, contenant 12 sommets, 30 arêtes et 20 faces, globalement invariant par un groupe de rotations, copie du groupe alterné de degré 5. Les faces de ce polyèdre sont des triangles équilatéraux.

Le groupe de symétrie complet est isomorphe au produit direct du groupe alterné par le groupe cyclique d'ordre 2, qui forme bien un groupe d'ordre 120. [7]

Voir aussi

Notes

  1. F. Buekenhout M. Parker The Number of Nets of the Regular Convex Polytopes in Dimension ⇐4 Disc. Math. 186, 69-94, 1998
  2. Albrecht Dürer Géométrie Présentation et traduction de Jeanne Peiffer Seuil- Paris 1995 p 31 (ISBN 2020124270)
  3. P. Cromwell, Peter Polyhedra Cambridge University Press p 53 (1997) (ISBN 0521664055)
  4. Une analyse graphique est proposée sur le site R. Ferréol Icosaèdre
  5. Ces résultats sont présentés dans : E. W. Weisstein Icosahedron le site MathWorld
  6. On trouve ces calculs, par exemple dans : F. Buekenhout M. Parker The Number of Nets of the Regular Convex Polytopes in Dimension ⇐4. Disc. Math. 186 pp 69-94, 1998
  7. Cette approche est fréquemment traitée comme une application de la théorie des groupes finis : J. S. Lomont Applications of Finite Group Dover Publications 1993 p 82 (ISBN 0486673766)

Liens externes

Références


Solides géométriques
Les polyèdres
Les solides de Platon
Tétraèdre - Cube - Octaèdre - Icosaèdre - Dodécaèdre
Les solides d'Archimède
Tétraèdre tronqué - Cube tronqué - Octaèdre tronqué - Dodécaèdre tronqué - Icosaèdre tronqué - Cuboctaèdre - Cube adouci - Icosidodécaèdre - Dodécaèdre adouci - Petit rhombicuboctaèdre - Grand rhombicuboctaèdre - Petit rhombicosidodécaèdre - Grand rhombicosidodécaèdre
Les solides de Kepler-Poinsot
Petit dodécaèdre étoilé - Grand dodécaèdre étoilé - Grand dodécaèdre - Grand icosaèdre
Les solides de Catalan
Triakioctaèdre - Tétrakihexaèdre - Triakitétraèdre - Pentakidodécaèdre - Triaki-icosaèdre - Dodécaèdre rhombique - Icositétraèdre pentagonal - Triacontaèdre rhombique - Hexacontaèdre pentagonal - Icositétraèdre trapézoïdal - Hexakioctaèdre - Hexacontaèdre trapézoïdal - Hexaki icosaèdre
Les solides de Johnson
Les solides de révolution
Boule - Cylindre de révolution - Cône de révolution - Tore - Paraboloïde de révolution

Recherche sur Amazone (livres) :



Ce texte est issu de l'encyclopédie Wikipedia. Vous pouvez consulter sa version originale dans cette encyclopédie à l'adresse http://fr.wikipedia.org/wiki/Icosa%C3%A8dre.
Voir la liste des contributeurs.
La version présentée ici à été extraite depuis cette source le 10/03/2010.
Ce texte est disponible sous les termes de la licence de documentation libre GNU (GFDL).
La liste des définitions proposées en tête de page est une sélection parmi les résultats obtenus à l'aide de la commande "define:" de Google.
Cette page fait partie du projet Wikibis.
Accueil Recherche Aller au contenuDébut page
ContactContact ImprimerImprimer liens d'évitement et raccourcis clavierAccessibilité
Aller au menu